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Morphology as a mediator of risk

Source — pathway — receptor model for coastal flooding
(Sayers, 2002)
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Beach — cliff system as pathway for erosion
risk, Happisburgh, Norfolk
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Coastal change in Britain — a bigger picture

» Formation of North Sea Basin and uplift of British
Isles over Cenozoic (> 60Ma).

= Glaciations of past 2- 3 Ma. Devensian, ice extended
from Scandinavia across northern North Sea and
became contiguous with ice sheets centred in North
Wales and Ireland. Sea level 120 - 140 m lower than
present and much of continental shelf exposed to
sub-aerial processes.

= Approximately 10,000 years ago, southern North Sea,
eastern English Channel and eastern Irish Sea still

dry.

= Early Holocene sea-level rise too rapid for shorelines
to reach erosional equilibrium and coastal change
mainly by inundation. By 4500 years BP, coastline
has modern gross configuration.

= Subsequent erosion of soft cliffs, marine reworking of
submerged Pleistocene sediments, and infilling o
estuaries. Rate of change slower in later Holocene as
supply of marine and coastal sediment exhausted,
partly by engineering works after 18th century.




The coast as a place of contemporary
erosional change

- Dunwich 2000 Landline, Digitised 1626, -+
Digitised 1587 and Digitised 1300 overlaid ontop of 2006 Aerial Photography
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Conceptual diagram relating time and space
scales of past and future coastal change

A Space (km)

Natural Large-scale
Evolution 4 Prediction
. 1000
© Tectonics © Behavior-
® Relative sea oriemgd
level change modeling
® System Historical
sediment istorical Tioo
budget Trends Mansagelment
) Integrate data & knowledge cale
ecClimate | ___~ L > Prediction
variability le-d
© Sediment T o Scientific Scale-down
supply understanding
Processes- Small-scale || ¢ pecision
AT Variabilit Prediction i
influence Yy making
*El Nino cycles -+ ® Process-based
® Seasonal t modeling
fluctuations
© Storm events Scale-up
. o
Time
‘ L 1 L L l l l Il Il L
T 1 1 1 1 1 1 1 1 1
Millennium  Century Decade Year Season Season Year Decade Century  Millennium
Past Future

Gelfenbaum & Kaminsky (2010, Marine Geology)

|dealised estuary morphological evolution
using a reductionist numerical model
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Integrated Coastal Sediment Systems (iCOASST)

systems

Meso-scale O(10" — 102 yr, km) coastal mapping
morphological change

Landform behaviour models nested in / —
shelf-scale coastal area models

behavioural
landform
models

coastal I

models
iii) provide framework for specifying and \
coupling landform behaviour models

New conceptual framework to:
i) integrate estuary, coast and shelf

ii) formalise knowledge of interactions
and multi-scale transport pathways
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Landform complexes
provide template for
model ‘compositions’

Landform models:

Coastal area

models: SCAPE +
Telemac
FVCOM | ESTEEM
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Figure 4. Flowchart illustrating interactions of a quasi-three-dimension-
al model (all lines) and a two-dimensional model (solid lines only).




SCAPE: Probabilistic cliff recession

(over 100 years)
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Hybrid ESTEEM model under development
at UCL

Intide modelnon-inest friction anly.

Deben estuary
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Prototype hydrodynamic code:
1D tidal channel scheme embedded

« tidal amplitudes determine in raster DEM
landform zonation
e currents drive sediment exchange



4. lllustrative SLAMM predictions: Blyth estuary, Suffolk, UK
g T‘] The Blyth estuary, Suffolk, eastern UK, is an initial 1est site for . -
| the modified SLAMM. Much of its intertidal was reciaimed priorto | ’

- the mid-19 century?. Some areas have been abandoned and )
_ thare I Interest in the falo of similar areas should thalr defences
fall or be removed. Simulations were performed lo explore
habitat evolution aftar hypothetical removal of defences under a
~ mid-range UK-CP09 saa-leval scenario. Separate runs | -
| investigated the effect of varied sedimentation models; constant |
(mean or max) or elevali tidal flat
basad on historic mud in the .
1, and eloval marsh modelled b &
using MARSH-0D, with and without a distance decay tem. 3 o

Fig. : Observed {tidal flat) and modelled (saltmarsh) sedimantation
wsed 10 constrain SLAMM sub-madels
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Fig. 3 (abova): Byth Estuary, showing LDAR DEM (2m ged)
Fig. 5 (below): SLAMM predictions (5m grid) for atematre sedimentation models and UK-CPOS sea-level scenana.
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Configuration of model'domain to
changes in state” j
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Changing role of models in science .. and society?

Axiomatic conception

Theory = Model — Reality
Normal-science conception
v ]
Theory > Model Reality
( L)
Semantic conception
v 1 ¥ ]
Theory Model Reality
( 2 C 3

Axiomatic, normal-science, and semantic conceptions of the relationship
between theory, models, and reality (Manson, 2007).

And Zen?
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